Trabalho Prático de Avaliação

Probabilidades e Estatística

Grupo Nº 3

Célia Teixeira ei3636 Mário Serafim ei2300 José Afonso ei2467 João Pereira ei3502

Escola Superior de Tecnologia e Gestão de Beja

Temas Abordados no Trabalho

Testes de Hipóteses

Qui-quadrado

ANOVA

Teste T

Software de Análise Estatística

SPSS

Breve Definição:

O teste de Qui Quadrado, representado por χ^2 , é um teste de hipóteses muito usado em biologia que se destina a comparar proporções. O princípio básico deste método não paramétrico é comparar possíveis divergências entre as frequências observadas e esperadas para um certo evento.

O teste é utilizado para:

Verificar se a frequência com que um determinado acontecimento observado numa amostra, se desvia significativamente ou não da frequência com que é esperado.

(continuação)

Comparar a distribuição de diversos acontecimentos em diferentes amostras, a fim de avaliar se as proporções observadas destes eventos mostram ou não diferenças significativas, ou se as amostras diferem significativamente quanto às proporções desses acontecimentos.

(continuação)

Cálculo do χ^2 (Qui-Quadrado)

- \rightarrow Formulam-se as hipóteses estatísticas H_0 e H_1 .
- Na hipótese H_0 nega-se a existência de associação, entre as variáveis estatísticas. Consequentemente na hipótese H_1 , confirma-se a existência de associação entre as variáveis.
- Depois o que vamos por à prova é a hipótese $H_{_0}$, que no final do teste rejeitamos ou aceitamos.

(continuação)

Karl Person propôs a seguinte formula, para medir as possíveis discrepâncias : $\chi^2 = \sum \left[(o-e)^2 / e \right]$

em que:

o = frequência observada para a classe

e = frequência esperada para a classe

onde a frequência esperada se obtém através da formula seguinte :

$$e = \frac{Total_Coluna \times Total_Linha}{Total_Global}$$

(continuação)

- As frequências observadas obtêm-se directamente dos dados das amostras.
- Quando as frequências observadas são muito próximas das esperadas, o valor do χ^2 , é pequeno.
- → Quando as divergências são grandes (o e), passa a ser também grande, e consequentemente χ^2 assume valores altos.

Por último é necessário calcular o grau de liberdade do teste, usando a seguinte fórmula :

GL = (Numero de Linhas - 1) x (Numero de Colunas - 1)

A ANOVA faz a análise da variação total de um grupo de dados de duas formas distintas.

- Variação entre Grupos
 Avalia a discrepância de todos os valores brutos em relação às médias dos grupos a que pertencem.
- Variação dentro dos Grupos
 Avalia a própria discrepância existente as médias de cada grupo.

(continuação)

Pressupostos da análise de variância:

- As observações dentro de cada grupo têm distribuição normal.
- → As observações são independentes entre si.
- As variâncias de cada grupo são iguais entre si, ou seja, há hamacedasticidade.

(continuação)

- → A análise de variáveis compara a proporção relativa da variância dentro das amostras ou grupos (também designada por variância residual ou dentro dos grupos), com a variância entre as amostras ou grupos (também designada por variância do factor ou entre grupos).
- Se a variância residual (associadas aos erros de medida) for significativamente inferior à variância entre os grupos ou amostras então as médias populacionais estimadas a partir das amostras são significativamente diferentes.

(continuação)

Hipóteses a testar:

H0: $\mu 1 = \mu 2 = ... = \mu k$

H1: µi ≠ µj para todo i ≠ j e i,j = 1, ..., k para todos os pares

→ A estatística do teste da ANOVA é dada pela razão entre a variância do factor e a variância dos erros.

(continuação)

→ A variação Total :

É a soma da variação dentro dos grupos e a variação entre os grupos e representada pela letra V.

→ Estatística F :

da

O numerador representa a variação entre os grupos comparados, e o denominador contem uma estimativa variação dentro desses grupos.

→ Grau de liberdade de um nível de significância:

É a máxima probabilidade de erro que se tem ao rejeitar uma hipótese.

Testes Paramétricos Teste *t*

As metodologias estatísticas que envolvem testes de hipóteses acerca de médias de hipótese designam-se genericamente por testes t.

Na realização do trabalho foi utilizado o teste *t* para Amostras Emparelhadas.

Breve Descrição:

Teste t para duas amostras emparelhadas:

Compara as médias de duas variáveis ou características para uma mesma amostra de indivíduos.

Testes Paramétricos Teste *t*

(continuação)

→ São apresentados os parâmetros estatísticos para as duas amostras em análise.

→ É calculada a correlação entre as duas amostras.

→ São apresentados os parâmetros estatísticos para as diferenças entre as duas amostras emparelhadas.

 \rightarrow É estabelecido um intervalo de confiança, para $(\overline{x}_1 - \overline{x}_2)$.

Testes Paramétricos Teste *t*

(continuação)

O teste de hipótese subjacente é :

$$H_0: \overline{x}_1 = \overline{x}_2 \qquad H_1: \overline{x}_1 \neq \overline{x}_2$$

$$\Leftrightarrow \qquad H_0: \overline{x}_1 - \overline{x}_2 = 0 \qquad H_1: \overline{x}_1 - \overline{x}_2 \neq 0$$

A estatística de testes é : T =

$$\frac{\overline{x}_1 - \overline{x}_2}{\sqrt{s^2 \times \left(\frac{1}{N_1} - \frac{1}{N_2}\right)}}$$

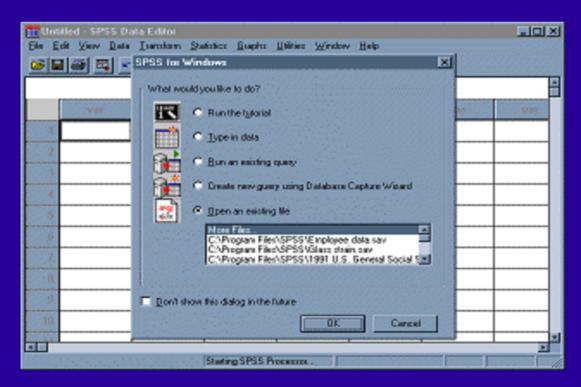
Software de Análise Estatística SPSS

(Statistical Package for the Social Sciences)

O programa de computador **SPSS** teve a sua primeira versão em 1968 e é um dos programas de análise estatística mais usados nas ciências sociais.

Foi inventado por Norman H. Nie, C. Hadlai (Tex) Hull e Dale H. Bent. Entre 1969 e 1975 a Universidade de Chicago por meio do seu National Opinion Research Center esteve a cargo do desenvolvimento, distribuição e venda do programa. A partir de 1975 corresponde à SPSS Inc

Software de Análise Estatística


SPSS (continuação)

O SPSS Data Editor é útil para fazer <u>testes estatísticos</u>, tais como os testes da <u>correlação</u>, <u>multicolinearidade</u>, e de <u>hipóteses</u>.

Pode providenciar ao pesquisador contagens de frequência, ordenar dados, reorganizar a informação, e serve também como um mecanismo de entrada dos dados, com rótulos para pequenas entradas.

Software de Análise Estatística SPSS (continuação)

Vista da Janela Inicial do SPSS

Bibliografia

Spss Guia Prático de Utilização - Análise de Dados para Ciências Sociais e Psicologia

Autor: Alexandre Pereira Editora: Edições Sílabo

. Introduction to SPSS

Autor: Emory Morrison

Sebenta: University of Washington

. SPSS Manual de Utilização

Autor: Armando Mateus Ferreira

Sebenta: Escola Superior Agrária de Castelo Branco